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An adaptive method that robustly produces high aspect ratio tetrahedra to a general
3D metric specification without introducing hybrid semi-structured regions is presented.
The elemental operators and higher-level logic is described with their respective domain-
decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demon-
strated for 1000–1 stretching for a simple cube geometry. This form of adaptation is
applicable to more complex domain boundaries via a cut-cell approach as demonstrated
by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assump-
tions and approximations required to form a metric to specify adaptation, an approach
is introduced that directly evaluates interpolation error. The grid is adapted to reduce
and equidistribute this interpolation error calculation without the use of an intervening
anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D do-
mains.

Nomenclature

ū Interpolated Solution
û Reconstructed Solution
J Linear Mapping
M Grid Metric
R Grid Metric Eigenvectors
ũ Approximate Solution
A Integration Surface Area
dx̂, dŷ, dẑ Cartesian Unit Vectors
e Interpolation Error
h Length Specification
l Vector Length
m Norm Power
N Number of Elements
p Pressure
u Exact Solution
V Volume
w Interpolation Error Weight

Symbols
η Tetrahedron Mean Ratio1

κ Element
Λ Grid Metric Eigenvalues
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Ω Domain

Superscripts
′ Transformed Space

I. Introduction

Computational Fluid Dynamics (CFD) has become a powerful tool for the analysis and design of
aerospace vehicles. Obtaining a suitable grid remains the most difficult part of the entire CFD sim-

ulation process. Grids must provide adequate resolution of discretization errors and remain small enough
to permit reasonable computation times. The AIAA Drag Prediction Workshops2–6 are well-documented
examples of this difficulty even under the watchful eyes of experts. Mavriplis7 shows that discretization
errors dominate other error sources, even for the extremely fine grids computable on today’s supercomput-
ers. Chaffin and Pirzadeh8 detail the effort required to manually specify grid resolution for accurate three
dimensional (3D) high-lift computations, even with the availability of wind-tunnel data. The high degree
of manual intervention required in these cases prohibits the use of automated design tools. The manual
interaction required to create a suitable grid is reduced with adaptive grid methods. Automated parameter
studies9 and design10 are possible with an automated grid generation and adaptation process. Accurate final
adapted solutions can be produced that are independent of coarse initial grids.11–14

Aerospace flow features include discontinuities, shear layers, and boundary layers that require a strongly
anisotropic grid to resolve efficiently. Mavriplis,15 Owen,16 and Baker17 provide surveys of grid generation
and adaptation techniques. Hybrid methods18 treat the highly anisotropic regions of the domain as separate
semi-structured zones lacking the generality to treat changes in the topology of these anisotropic regions off
body. Global19 and local20 regeneration can suffer from the same robustness issues as initial grid generation.
Methods that apply isotropic techniques in a metric mapped space have been successful in two dimensions
(2D).19,21–24 The metric-based adaptation process has two principle components: determining an improved
resolution request and creating an improved grid that satisfies that request. The improved resolution request
is commonly based on local error estimates17,19,25,26 and can include the effect of local errors on a global
output quantity.11,27,28 The use of anisotropic grid metrics has become a very standard way to specify
a resolution request, but it does have limitations. Concessions must be made to fit output-based11 and
higher-order13 methods into the metric framework.

In 3D, general anisotropic adaptation conforming to curved domain boundaries is a much more difficult
task. Highly sophisticated methods that directly account for curved domain boundaries29 still require local
regeneration30 when invalid tetrahedra can not be repaired. A different approach removes the constraint
of generating a body-fitted grid and the complexities of adaptation directly on curved domain boundaries.
This cut-cell approach allows the grid to arbitrarily intersect the boundary and the CFD code is modified
to account for this arbitrarily intersection. Cartesian cut-cell methods have been very successful for Euler
simulations31–34 and some viscous simulations.35,36 This cut cell method has also been applied to simplex
meshes.13,14,37,38 When the constraint of providing a body-fitted grid is removed, the grid generation and
adaptation task becomes much simpler. Local incremental modification of an existing grid is then able to
produce grids with high anisotropy without curved boundary related robustness issues.

An adaptive method that robustly produces high aspect ratio tetrahedra satisfying a general 3D metric
specification without introducing hybrid semi-structured regions is presented. The method is intended for
planar geometries, where more complex domains can be simulated with a cut-cell approach. A simple example
with 1000–1 stretching is provided for illustration. A supersonic cut-cell simulation of a complex body is
also presented to illustrate the utility of the cut-cell approach with an adapted tetrahedral background grid.

Domain decomposition is employed to fully exploit the distributed memory of a cluster of computers to
increase simulation problem size. A secondary goal is to exploit parallelism to reduce the execution time of
the adaptation process. An added benefit of a parallel implementation is that parallel applications, i.e. a
CFD solver, may interface directly with the adaptation library without creating a global grid image. There
are a number of parallel simplex adaptation examples in the literature.39–48 Chrisochoides49 has compiled a
survey on the related problem of parallel grid generation.

An alternative approach to the standard formulation of adapting a grid to metric is introduced. The grid
is to adapted to improve an objective function such as interpolation error. This allows direct control of actual
computed error without the intervening metric specification. It is more natural to express an error integral
for output-based and higher-order adaptation schemes. This procedure is demonstrated for an analytical
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function in 1D with fifth-order elements and in 3D with linear and quadratic elements.

II. Geometry Modeling

The domain geometry is modeled as a hierarchical collection25,50 of geometry nodes, geometry edges,
and geometry faces that enclose the volume of interest. The GridEx framework51 is used with CAPRI52

to access CAD geometry models and store parameterizations on geometry edges and faces. A surrogate
geometry model is also implemented for analytical geometry, i.e., planar surfaces.

III. Elemental Grid Operators

(a) Node Movement.

(b) Triangle Swap.

(c) Triangle Split.

(d) Triangle Collapse.

Figure 1. 2D Nearest-Neighbor
Grid Modifications.

The grid adaptation scheme is constructed from a sequence of 3D
primitive nearest-neighbor grid modifications. The 2D analogue of node
movement, tetrahedra swap, tetrahedra split, and tetrahedra collapse are
shown in Figure 1.

III.A. Node Movement

Node movement changes the locations of the nodes while keeping the
tetrahedra connectivity fixed. This has also been a popular technique
for structured grid methods,17 because of the fixed connectivity. A node
location is adjusted with the neighboring node locations fixed to pro-
duce a Gauss-Seidel style relaxation scheme. This method allows explicit
constraints on the positivity of tetrahedral volume. Global relaxation is
not used, because explicit constraints can not be enforced directly. An
objective function is defined for each tetrahedron incident to a node. An
optimization procedure is invoked to improve a norm of the incident tetra-
hedron objective functions. If the L2-norm is selected and analytical gra-
dients are available, a steepest descent with line searches is employed. A
gradient-free simplex search is used when gradients are not available. If
the L∞-norm is selected, the smart-Laplacian and quadratic programming
optimization schemes of Ref. 53 are implemented. Nodes on geometry
faces and edges are moved in their respective parameterized spaces.

III.B. Tetrahedra Swapping

The 3D operations of face and edge swapping40,53 are performed. The
configuration that improves a norm of the involved tetrahedron objective
functions is chosen. The boundary faces are also swapped as a result of tetrahedra swapping. To maintain
correct surface topology, these boundary operations are not allowed to swap edges that are part of a geometry
edge.

III.C. Tetrahedra Split and Collapse

The tetrahedra split and collapse operations modify the density of the grid tetrahedra as well a contribute to
obtaining the desired anisotropy. There are many possible splitting stencils.54,55 In this work the simplest
2 for 1 splitting is employed. The split operator inserts a single new node. All the the tetrahedra that share
a segment connecting two nodes are split to include this new node. Segments that are on a boundary also
result in split boundary triangles and potentially split geometry edges.

For a collapse, All the the tetrahedra that share a segment connecting two nodes are removed. One of
these two nodes is removed and the remaining tetrahedra incident to the removed node are reconnected to
the remaining node. Tetrahedra collapse operations are not permitted if they violate geometry topology, i.e.,
deleting a node constrained to a geometry surface and reconnecting adjacent tetrahedra to a volume node.
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IV. Parallelization

The elemental operators are executed in parallel with a domain decomposed scheme. The resulting
partitions allow the independent application of elemental operators to the partition interiors. Most of the
complexity of this parallel approach arises when these operators are applied in the partition-border regions.

IV.A. Domain Decomposition

Partition Boundary

(a) Global Grid.

BorderLocal
Element

Ghost Node
Border Node
Purely Local Node

Element

(b) Partition 1.

(c) Partition 2.

Figure 2. Two Partition Domain
Decomposition 2D Example.

To fit large problems on a cluster of distributed-memory machines, the
domain or grid is decomposed into partitions. A node-based, domain-
decomposition scheme is utilized, where each node is uniquely assigned
to a single partition. Tetrahedra that span the partitions are duplicated
to complete the border regions of the partitions. This is the Single Pro-
gram Multiple Data (SPMD) paradigm; each partition data structure is
processed by the same program. The domain decomposition scheme is
identical to the method utilized by FUN3D.56

A 2D, two partition example is illustrated in Figure 2. A node is
denoted local and added to a partition if it has been assigned to that
partition (denoted filled circles and open circles). The geometry edges,
boundary triangles, and tetrahedra that contain one or more local nodes
are also added to the partition. These include tetrahedra that are entirely
local to a partition (solid lines) or border tetrahedra that span partition
boundaries (dashed lines). Local nodes that are only used to construct
local tetrahedra are denoted as purely-local nodes (filled circles). Local
nodes that are used to construct border tetrahedra are denoted as border
nodes (open circles).

The local nodes of other partitions are added as ghost nodes (dashed
circles) to the current partition as required to complete the border tetra-
hedra. The partition that these ghost nodes are assigned is also stored to
reduce the parallel communication required to update partition-border re-
gions. Purely-local nodes are only connected by tetrahedra to other local
nodes. A partition’s border nodes are local nodes that are connected to a
ghost node by a border tetrahedron. Therefore, nodes are either purely-
local, border, or ghost. Tetrahedra are either local or border. Nodes have
a unique global index and a local index on each partition.

The parallel aspects of node movement will be discussed first. Then
the parallel aspects of connectivity changes, swap, split, or collapse, will be
detailed. These will be followed by the implementation issues of maintain-
ing unique global node and tetrahedra indexes and equally sized partitions
for parallel efficiency.

IV.B. Ghost Node Update

Ghost node parameters must be updated when the corresponding border
node on another partition is modified. This operation is complicated by
tetrahedron connectivity changes during adaptation. These connectivity
changes in partition borders alter the inter-partition communication pat-
tern to update ghost nodes. To recompute the communication pattern,
every partition sends a list of ghost node global indexes to the partition
that is assigned those nodes. On the assigned partitions, these requests
for updated nodal information are translated into local node indexes. The
global indexes of local nodes are stored in a sorted list. The translation is
performed in O(log2 n) time with a binary search algorithm. These indexes allow access to the stored local
values of the requested nodal position, face parameters, and edge parameter. The requested information is
sent back to the partitions to update their ghost nodes.
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IV.C. Purely-Local and Border Node Movement

The nearest-neighbor information must be current when smoothing nodes to prevent the creation of invalid
tetrahedra. Freitag42 and Löhner40 address the issues for maintaining current nearest-neighbors while node
smoothing on a shared-memory architecture. In other distributed memory implementations,46,47 border
nodes are frozen during adaptation. Then the domain is repartitioned and migration is used to change these
frozen border nodes into local nodes. A number of repartitioning steps ultimately allow the processing of
all nodes as local nodes. In this implementation, the nearest-neighbor node movement operators are applied
separately to local and border regions without repartitioning.

An initial pass is made through all the purely-local nodes on all partitions. These nodes do not require
any information from other partitions. Therefore, the partitions can modify purely-local nodes concurrently
without parallel communication. After the purely-local regions of the partition have been smoothed, the
border nodes are smoothed one partition at a time. The ghost nodes are updated after each partition takes its
turn to ensure that nearest-neighbor information is current. Unfortunately, only allowing execution on one
partition results in suboptimal scaling, because the other partitions are idle until they have an opportunity
to process their border nodes. The amount of time that processors remain idle during adaptation can be
reduced by allowing concurrent execution through partition coloring.

IV.D. Partition Coloring

To increase parallel efficiency, groups of unconnected partitions are allowed to simultaneously smooth border
nodes in between ghost node updates. The sets of unconnected partition groups are calculated with a coloring
scheme where no two adjoining partitions share a color. All the partitions in a single color can then move
nodes concurrently with current ghost node information. Parallel communication is only required between
the processing of different colors, which are less than or equal to the number of partitions. The partition
coloring scheme is also applied to increase the parallel efficiency of border tetrahedron connectivity changes.

IV.E. Local and Border Connectivity Changes

The connectivity of the tetrahedra change as a result of swapping, splitting, and collapsing. In other parallel
adaptation implementations,46–48,55 connectivity changes are performed in the interior of the partition and
migration is used to make border regions interior. In this work, the tetrahedron connectivity changes are
performed on purely-local and border tetrahedra in separate operations without migration. These connec-
tivity changes may be due to edge swapping, face swapping, or the insertion of new nodes. The removal of
nodes is currently allowed only in purely-local partition regions, because the geometry topology information
required to maintain a topologically valid discrete surface triangulation is not stored with ghost nodes. This
limitation may be removed with a small amount of additional storage.

Initially, connectivity changes are only performed on local tetrahedra. This in an efficient parallel oper-
ation because all partitions perform connectivity changes simultaneously. Updates of the border tetrahedra
region are performed one partition at a time. To correctly mirror connectivity changes across partitions,
transcripts are recorded of the nodes and tetrahedra that are added or removed as a result of this border
tetrahedra adaptation. These transcripts are serialized and broadcast to other partitions. The receiving
partitions apply the transcripts to maintain consistency between partitions. The parallel inefficiency of this
inherently sequential operation is alleviated by allowing unconnected partitions to change border connectiv-
ities concurrently via the partition coloring scheme described in Section IV.D.

The transcript is composed of all the data required to update connectivities (tetrahedra, geometry tri-
angles, and geometry edge segments) and create new ghost nodes (position, face parameters, and edge
parameters). The size of these transcripts is reduced by utilizing the stored ghost node partition assign-
ments to restrict the transcript to the minimum information required to maintain consistency. Minimizing
the contents of the transcripts reduces parallel communication cost and the time required to perform the
specified transcript operations on the other partitions. Parallel efficiency is maintained while applying the
transcripts to other partitions, because transcripts are processed concurrently. Ghost nodes that are no
longer connected to a border tetrahedron after connectivity changes are also removed.
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IV.F. Global Indexes

The global node indexes are required to reconstruct the parallel communication pattern after connectivity
changes. Global cell indexes are not required for parallel adaptation, but are maintained as a convenience
to the application requesting adaptation. Unique global cell indexes are maintained with exactly the same
algorithm as the global node indexes, so only the global node index scheme is described.

The algorithm to assign and maintain global node indexes is simple. A partition takes ownership of a
global node index during the initialization of its local nodes. Once a partition is assigned a global index, it
never relinquishes it until the completion of adaptation. If a local node is deleted during adaptation, the
partition stores this unused global index in a list. If the partition needs a unique global index to insert a
node into the discretization, it will extract an unused global index from the list.

When this list of unused global indexes is exhausted, the partition creates a new global index by in-
crementing its count of global indexes. Two or more partitions may obtain the same global index; these
repeated global indexes are made unique by shifting the newly created global indexes. After shifting the
newly created global node indexes, the true count of global indexes is shared amongst partitions.

Partition Total Indexes of New Nodes

Before Shift A 103 101 102 103

B 102 101 102

C 100 none

D 104 101 102 103 104

After Shift A 109 101 102 103

B 109 104 105

C 109

D 109 106 107 108 109

Figure 3. An Example of Creating New Global Indexes On Four Partitions
With 100 Original Global Indexes, Before and After Shift.

Figure 3 provides a four proces-
sor example that begins with 100
unique global nodes. Three of four
partitions need new global nodes to
insert nodes while concurrently per-
forming edge split operations. Par-
tition C does not insert any nodes.
After the edge split operation, these
newly created nodes are shifted to
make them unique. The correct to-
tal number of nodes is also com-
puted by partition D and communi-
cated to all partitions. The parallel
communication required to maintain unique global indexes is reduced by allowing the temporary creation of
repeated global indexes that are later corrected.

The unused global indexes are removed at the completion of the adaptation by a reverse, global-index
shifting procedure. This ensures that the calling application will be returned a grid with continuous global
indexes.

IV.G. Load Balancing

Load balancing is employed to maintain parallel efficiency. The parallel, graph-partitioning tool ParMETIS57

is utilized to create well-balanced partitions with a minimum number of connections. During adaptation,
the number of nodes in each partition can change significantly due to the addition and removal of nodes.
Also, the communication cost can increase due to connectivity changes. At the completion of the adaptation
process, ParMETIS is called and portions of the grid are migrated to regain an optimal partitioning.

V. Anisotropic Metric

A metric tensor M is commonly employed to define the desired multidimensional grid resolution because
it is a natural way to express local interpolation error estimates of linear functions.22,25,26,58 The symmetric
positive definite matrix M in 3D has the diagonal decomposition

M = R

 Λ1

Λ2

Λ3

Rt = RΛRt. (1)
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The eigenvectors R define an orthonormal basis with length specifications hi in this basis,

Λ =


(

1
h1

)2 (
1
h2

)2 (
1
h3

)2

 . (2)

This metric can be interpreted as an ellipsoid with major and minor axes of direction Ri and length hi.25

The linear mapping J is employed to map a vector in physical space x = [x y z]t to a vector in transformed
space x′ = [x′ y′ z′]t where a triangle or tetrahedron becomes equilateral with unit length edges; that is,

x′ = Jx. (3)

The metric tensor M is related to J by
M = JtJ and (4)

J = Λ
1
2 Rt. (5)

If a vector x describes an edge in physical space, the length l in mapped space is

l =
√

x′tx′. (6)

Employing Equation (3), this expression of length becomes

l =
√

(Jx)t (Jx) and (7)

l =
√

xtMx. (8)

Equ. (8) is employed to directly compute edge lengths in the specified metric. Equation (3) is applied to
the physical coordinates of tetrahedron nodes to map them to the transformed space before evaluating a
tetrahedron’s quality.

The resolution request is stored as M during adaptation instead of storing J directly due to these benefits:

• It is compact; only 6 entries of the 3D symmetric M are stored.

• Multiple M can be readily interpolated and intersected.22,58

• Lengths in the specified metric can be computed efficiently with Equ. (8).

A slight computational cost is incurred computing J from M when J is needed to obtain metric transformed
tetrahedron. This cost is a 3 × 3 symmetric positive definite matrix diagonalization and Equ. (5). This
cost is minimized by tridiagonalizing M with a single rotation and applying an iterative method to find the
eigendecomposition of the tridiagonal matrix.

VI. Objective Function

Grid adaptation is essentially an optimization procedure where a current mesh is iteratively modified
to improve a figure of merit. These modifications can be continuous (node movement) or discontinuous
(connectivity change). The optimization process requires an objective function. In 3D, considering only
edge length as a quality measure can result in degenerate tetrahedra, because a nearly-zero-volume ‘sliver’
tetrahedra can be constructed without a short edge. Shape measures1,59 are employed to penalize near-
degeneracies and provide a smooth function to optimize. These measures are based on interpolation error
estimates, departure from a right or isotropic tetrahedron, or transformation matrix conditioning.60 A norm
of the mesh conformity to a specified multidimensional grid resolution61 can also be stated directly.

The mean ratio1 η is selected for this work. It is efficient to evaluate and a well-behaved continuously dif-
ferentiable function, which makes it very suitable for gradient-based optimization.60 It also has a connection
to metric conformity without size specification.61 Optimizing η in the specified metric produces tetrahedra
that are isotropic in the metric space. This tends to produce elements with large dihedral angles in physical
space. Shape measures that penalize large angles can be difficult to optimize with gradient-based methods,
see Shewchuk60 for examples.

7 of 17

American Institute of Aeronautics and Astronautics



VII. Adaptation Iteration to Specified Metric

The elemental operations with their respective parallel procedures are combined to improve the grid.
The goal of the adaptive processes is to produce a grid with the following properties in decreasing priority:

• All tetrahedra have positive volume.

• All edges have a length less than or equal to unity in the specified metric field.

• The number of nodes and tetrahedra in the mesh should be reduced by collapsing edges shorter then
unity in the metric field.

• The tetrahedra shape quality in the metric should be improved.

The iterative process begins by sweeping through the mesh and applying tetrahedral swaps to configurations
with the greatest improvement of the worst involved tetrahedra η. The swaps operate on a prioritized list of
the worst η tetrahedron to the best. Then node locations are individually adjusted to improve η of the worst
incident tetrahedra. The node movement scheme operates on a prioritized list of nodes sorted by their worst
incident tetrahedra η. Edges with metric lengths less than 0.3 are collapsed if positive tetrahedra result and
no edges longer than unity in the metric are created. Finally, all edges longer than unity in the metric are
split. This process is repeated until all edge lengths are less than or equal to unity.

VII.A. Analytic Metric Adaptation

The volume grid of a unit cube domain [0, 1]× [0, 1]× [0, 1] is adapted to an analytic metric field. The original
grid, Figure 4(a), was created by the FELISA grid generator62 through the GridEx framework51 with an
isotropic spacing of 0.1. This original grid was adapted to ensure that all edges are less than or equal to 0.1,
Figure 4(b). An anisotropic metric

[0.1dx̂, 0.0001 + 0.0999
|y − 0.5|

0.5
dŷ, 0.1dẑ] (9)

was used for adaptation in Figure 4(c). The volume grid is clustered near the y = 0.5 plane. This clustering
is evident on the x = 0 and z = 0 visible surfaces of the cube.

(a) FELISA Grid. (b) All Edges Smaller than Metric
0.1–0.1–0.1.

(c) All Edges Smaller than Metric
0.1–0.1–0.0001.

Figure 4. Isometric Views of a Cube.

Anisotropic scaling of the figures aids illustration of the the grid corresponding to this simple metric
field. The z = 0 face of the Figure 4(c) cubic grid is shown in Figure 5. The y-axis is progressively scaled in
the series of subfigures, but the grid itself remains fixed. Figure 5(a) shows the anisotropically adapted grid
with 1–1 scaling. The y-axis scales by a factor of ten in each subsequent subfigure while the x axis is held
constant. Figure 5(d) shows the anisotropically adapted grid with 1–1000 scaling, which results in a figure
width of 1 and a figure height of 0.001 in physical space. The center of the strongly anisotropic grid appears
isotropic in this anisotropically scaled view as a result of this mapped isotropic method.
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(a) 1–1 View. (b) 1–10 View. (c) 1–100 View. (d) 1–1000 View.

Figure 5. Face of a Cube (z = 0) Adapted to a 0.1–0.1–0.0001 Metric.

VII.B. Flow Solution Metric Adaptation

The adaptation mechanics have been applied to 3D output-based63–65 and local-error-estimate-based66 adap-
tive simulations with body-fitted grids. These previous examples have been limited to mild anisotropy or
frozen boundary discretizations to avoid the complexities of high anisotropy adaptation of body-fitted grids
on curved boundaries.29 An alternative is to employ a cut-cell procedure to handle complex geometries and
perform adaptation on an uncut background grid with planar geometry (e.g., cube).

An example of a geometry that may suffer from adaptation robustness is NASA ship 837, a modified
F-15. This geometry contains many narrow regions around the control surfaces and high surface curvatures.
A shaded triangular surface grid of the modified F-15 is shown in Fig. 6. The volume defined by this surface
is subtracted from the dual of a tetrahedral background grid. The resulting triangle-triangle intersections33

determine the portion of the background grid that remains inside the computational domain. The FUN3D
flow and adjoint solver are modified to handle the complex cut cells67 that arise at the intersection of the
surface and background grids. An anisotropic output-based adaptation scheme11,63 was modified to account
for the cut cells. An implied metric is constructed for the background grid nodes inside the surface geometry,
which are outside of the computational domain to limit unnecessary adaptation of these regions. Adaptation
iterations are performed to improve the calculation of a surface pressure p integral below the configuration65∫

p dA. (10)

The simulation is performed at Mach 1.4 and 1 deg angle of attack. The symmetry plane of the original
and adapted tetrahedral background grid is shown in Fig. 7. A crude outline of the F-15 on the symmetry
plane is indicated on the adapted grid where the grid inside the configuration is not modified because the
implied metric is satisfied. The background grid has anisotropically aligned to the complex shock structure
of the supersonic flow field seen in Fig. 8. The density of the grid is specified by the output-based adaptation
intensity and the anisotropy is specified by a Mach Hessian.11,63

VIII. Adaptation to Directly Control Interpolation Error

The adaptation metric is based on local interpolation error estimates, specifically, the departure of a linear
and quadratic representation of the solution via a Hessian.19 Output-based adaptation methods include a
similar weighted interpolation error.11 The Hessian method determines the direction of the largest next
higher order derivative for linear functions. For higher order functions, a search for this direction can be
employed.13 An alternative methodology is to evaluate the (possibly weighted) interpolation error directly
to define the adaptation objective function.

Weighted interpolation error is defined as(∫
Ω

|w(ū− u)|m dΩ
)1/m

, (11)

where the exact solution u, interpolant ū, and the weight w are defined in the domain Ω. The ū is defined
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Figure 6. Surface Geometry of the Starboard Half of NASA Ship 837.

as a p-order polynomial in each element κ, which completely discretize Ω. The u is sampled to form ū in
each element.

This u may be an unknown solution (possibly of a partial differential equation), but if an approximate
solution ũ is available on a set of discrete elements κ0, the exact solution is approximated as follows. The ũ
consists of p-order polynomials individually defined in each κ0. To estimate the leading order terms of the
exact interpolation error, a p + 1-order solution û is reconstructed from ũ.68 This results in a computable
interpolation error (∫

Ω

|w(ū− û)|m dΩ
)1/m

. (12)

VIII.A. 1D Interpolation Error Adaptation Example

A 1D interpolation error adaptation example is shown in Fig. 9 for p = 5 elements. The tanh exact function
u is defined in the 1D region [0, 1],

u = tanh(50(x− 0.4)). (13)

Although the exact solution is available for this case, a ũ will be constructed by fitting the p-order Lagrangian
basis that minimizes (∫

κ0

|ũ− u|2 dκ0

)1/2

(14)

independently in each element. The left column of Fig. 9 shows this discontinuous fit for a series of adapted
1D grids. A C0 p + 1-order function û is formed from the discontinuous ũ by minimizing(∫

Ω

|û− ũ|2 dΩ
)1/2

(15)

over the entire domain. A C0 ũ is required to prevent the adaptation process from introducing zero width
elements at the discontinuous function jumps. This ũ is shown in the right column of Fig. 9. The domain
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Figure 7. Symmetry Plane Triangulation of the Original and Adapted Tetrahedral Background Grid.

discretization is adapted into elements κ. Given a local element output error estimate of the form

eκ =
(∫

κ

|w(ū− û)|m dκ

)1/m

, (16)

where ū is a p-th order polynomial representation of the function û in each element and m = 2. The function
ū is directly interpolated from û. The total output error for the domain is the sum of the elemental errors

eΩ =

(∑
κ∈Ω

(eκ)m

)1/m

. (17)

Following Zienkiewicz and Zhu,69 the goal is to equidistribute this error estimate. An equal amount of error
for each element is

ēκ =
(

(ēΩ)m

N

)1/m

, (18)

where ēΩ is the requested total interpolation error and N is the number of elements. A step of the adaptive
procedure is as follows;

• Given the current grid, construct a discontinuous p Lagrange basis ũ with an L2-norm fit of the element
at Gaussian integration points weighted with the Gaussian integration weights.

• Reconstruct a continuous p + 1 Lagrange basis û with an L2-norm fit of ũ over the domain.

• The function w is assumed to be unity.

• Exit adaptive procedure if eΩ ≤ ēΩ.

• Repeat until the number of elements stabilize:

– Evaluate Equation (16) for all elements in the grid; split the element in half with the largest value
of eκ, if eκ > ēκ.

– Evaluate Equation (16) for all elements in the grid; merge the element with the smallest value of
eκ with a neighbor, if eκ < ēκ after merge.

• Perform 2 Gauss-Seidel sweeps of node position optimization; each sweep progresses from the element
with the largest eκ to the element with the smallest eκ.

These steps are repeated to form adaptive procedure.
Each step of the adaptive procedure is shown as a row in Fig. 9. The upper left subfigure shows ũ on

the initial two element grid. Element boundaries are marked with a + symbol. The inter-element jump is
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Figure 8. Computed Surface and Symmetry Plane Pressure Contours on the Final Adapted Grid.

evident for this discontinuous p = 5 Lagrangian basis on the initial grid. The upper right subfigure shows
the first adapted grid interpolating the p = 6 continuous Lagrangian basis û. The second row of subfigures
exhibits the Gibbs phenomenon near the rise in the tanh function. This phenomenon is damped in the third
and fourth rows as adaptation progresses.

VIII.B. 3D Interpolation Error Adaptation Example

A cubic domain is employed in an 3D adaptation example to directly control interpolation error. The
adaptation consists of four modes. These are tetrahedra swapping, node movement, tetrahedra collapse, and
tetrahedra split.

The swapping pass begins with a sorted list of tetrahedral eκ for all tetrahedra with eκ > ēκ. Each
tetrahedra on this list is considered in turn and it is swapped with its neighbors to a configuration that
lowers the norm (

∑
em
κ )1/m to the greatest extent with positive volume tetrahedra. Node movement is

performed on a prioritized list of nodes with the greatest value of the norm (
∑

(eκ/Vκ)m)1/m, where the
summation is over tetrahedra incident to the node. The volume of the tetrahedra Vκ is included to penalize
nearly degenerate tetrahedra. A simplex search is performed on the prioritized node list to optimize the
inverse volume weighted norm. Nodes on geometry faces or geometry edges are optimized in their respective
lower dimensional parameterizations. The orbit of tetrahedra that surround segments connecting two nodes
are examined for potential collapse. This collapse is performed if the new configuration has an error norm
less than the specified ēκ and the resulting tetrahedra have positive volume. The tetrahedra split pass
begins with a sorted list of tetrahedral eκ for all tetrahedra with eκ > ēκ. The six edges of the tetrahedra
are examined and a split is performed on the edge that results in the greatest reduction in error norm. The
adaptation process repeats until eΩ > ēΩ.

The exact function for this example is

u = 8x2 + 32y2 + 1000 tanh(10(z − 0.5)). (19)

As in the 1D example, the interpolation weight is unity w = 1. Approximate and reconstructed solutions are
not used for this 3D case; the exact function is evaluated for interpolation error. The initial grid is shown

12 of 17

American Institute of Aeronautics and Astronautics



in Fig. 4(a). The grid adapted to ēΩ = 1.0 for p = 1 tetrahedra is shown in Fig. 10(a). The grid adapted
to ēΩ = 0.1 for p = 2 tetrahedra is shown in Fig. 10(b). For both cases the final interpolation error norm
was slightly less than half the requested error norm. An anisotropic metric was not employed for this case;
interpolation error is directly specified and controlled. The anisotropy seen in Fig. 10 is a result of efficiently
resolving the anisotropic function.

IX. Concluding Remarks

An anisotropic tetrahedral grid adaptation scheme was demonstrated for a 1000–1 metric in a simple cube
geometry. A supersonic adaptive cut-cell simulation of a fighter geometry was also presented. The method
adapts an existing mesh to a specified metric and does not require semi-structured regions to attain high
aspect ratios. The elemental adaptation operators were described with their respective domain-decomposed
parallelizations. An alternative approach was introduced that avoids the use of a specified metric and
directly evaluates interpolation error to drive the adaptation mechanics. This direct method is applicable to
output-based and higher-order adaptation without the concessions required to fit into a metric adaptation
framework.
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Figure 9. Four 1D Adaptation Cycles to the Interpolation Error of tanh with p = 5 Basis (One Cycle per Row,
Approximate Solution in Left Column, Reconstructed Solution in right Column)
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(a) Adapted p = 1 to ēΩ = 1.0, Actual eΩ = 0.46. (b) Adapted p = 2 to ēΩ = 0.1, Actual eΩ = 0.041.

Figure 10. Isometric Views of an Interpolation Error Adapted Cube.
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